Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays: a comparative study.
نویسندگان
چکیده
Abstract-Elevated metal concentrations in soils can disturb the soil ecosystem; thus, researchers strive to identify the most sensitive assay for detection of the early signs of toxicity. The purpose of the present study was to compare eight different ecotoxicological endpoints on the same set of metal-contaminated soils that were collected from seven series of soils sampled during field trials. The endpoints are based on three microbial assays (potential nitrification rate [PNR], substrate-induced respiration [SIR], and basal respiration [BR]) and two plant growth tests, one of which included symbiotic N fixation. The overall sensitivity of the endpoints to detect statistically significant adverse effects ranked as follows: PNR > SIR (lag time) > plant yield and N fixation > SIR (respiration after 24 and 48 h) > BR. The lowest adverse effect concentrations were found with the PNR at 7 mg kg(-1) of Cd and 107 mg kg(-1) of Zn. The variability of these endpoints among different uncontaminated soils was additionally assessed on 14 soil samples. That variability showed a strong correlation with sensitivity scores, illustrating that metal-sensitive endpoints have a large natural variability. We question the ecological relevance of highly sensitive microbial assays, because they tend to have a large natural variability. The identification of toxicity in the field requires endpoints that are highly sensitive and that do not vary greatly among soils (i.e., robust); however, no such endpoint was found in the present study. The endpoints that combined average sensitivity and robustness were SIR (lag time), clover yield, and N fixation in clover.
منابع مشابه
Comparative Study on the Remediation Potential of Panicum Maximum and Axonopus Compressus in Zinc (Zn) Contaminated Soil
Soil contamination by heavy metals has increased noticeably within the past years. Unlike organic compounds, metals cannot degrade; therefore effective cleanup is required to reduce its toxicity. This experiment was undertaken to investigate the comparative potential of Panicum maximum and Axonopus compressus to bioremediate zinc polluted soils, the impact of Zn on the antioxidant defense syste...
متن کاملComparative Study on the Remediation Potential of Panicum Maximum and Axonopus Compressus in Zinc (Zn) Contaminated Soil
Soil contamination by heavy metals has increased noticeably within the past years. Unlike organic compounds, metals cannot degrade; therefore effective cleanup is required to reduce its toxicity. This experiment was undertaken to investigate the comparative potential of Panicum maximum and Axonopus compressus to bioremediate zinc polluted soils, the impact of Zn on the antioxidant defense syste...
متن کاملPotential of indigenous microbes as helping agents for
The aim of this study was to assess the effects of heavy metal tolerant soil microbes inoculation on growth and metal uptake of pearl millet (Pennisetum glaucum), couch grass (Triticum repens) and alfalfa (Medicago sativa) in a soil spiked (and subsequently aged) with increasing concentrations of Pb. A soil sample (soil 1) was spiked with increasing (0 to 1500 mg/kg) concentrations of Pb and in...
متن کاملCharacterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.)
Plant growth promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. In search of efficient PGPR strains with multiple activities, a total of 150 bacterial isolates belonging to Bacillus, Pseudomonas, Azotobacter and Rhizobium were isolated from different rhizospheric soil of chick pea in the vicinity of Allahabad. These test isolates were bi...
متن کاملFungi and bacteria as helping agents for remediation of a Pb - contaminated soil by Onopordum acanthium
Phytoremediation is a promising method for remediation of heavy metals (HMs) contaminated environments. However, the main failures are the limited bioavailabilty of HMs such as lead (Pb) in the soil and/or suppressed plant growth in contaminated sites. These limitations specifically occur in semi-arid zone environments such as calcareous soils. Arbuscular mycorrhizal fungi (AMF) and plant growt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental toxicology and chemistry
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2005